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ABSTRACT
This paper addresses how to automatically generate code for mul-
timedia extension architectures in the presence of conditionals. We
evaluate the costs and benefits of exploiting branches on theaggre-
gatecondition codes associated with the fields of asuperword(an
aggregate object larger than a machine word) such as the branch-
on-any instruction of the AltiVec. Branch-on-superword-condition-
codes (BOSCC) instructions allow fast detection of aggregate con-
ditions, an optimization opportunity often found in multimedia ap-
plications. This paper presents compiler analyses and techniques
for generating efficient parallel code using BOSCC instructions.
We evaluate our approach, which has been implemented in the
SUIF compiler, through a set of experiments with multimedia bench-
marks, and compare it with the default approach previously imple-
mented in our compiler. Our experimental results show that using
BOSCC instructions can result in better performance for applica-
tions where the aggregate condition codes of a superword often
evaluate to the same value.

1. INTRODUCTION
Many modern microprocessors include an expanded instruction set
specifically targeting multimedia applications, with a functional
unit that operates on aggregate objects to perform SIMD parallel
operations on variable-sized fields in the object (e.g.,8, 16, 32 or
64-bit fields). If the aggregate objects are larger than a machine
word, they are calledsuperwords[12].

Recently proposed parallelization techniques for multimedia exten-
sion architectures are based on two distinct approaches. One ap-
proach relies on exploiting classical vectorization technology [20,
4, 5, 3, 7]. Another approach,superword-level parallelization(SLP),
involves packingisomorphicinstructions and their associated data
into superwords, possibly performing loop unrolling to expose par-
allelism [12, 11, 14]. SLP relies on the observation that multimedia
extension architectures support short “vectors”, and that unrolling

to expose parallel operations on objects in a superword can lead to
more effective parallelization than the more complex code transfor-
mations associated with vectorization. Whether SLP or vectoriza-
tion is used, parallelization in the presence of control flow is still
an open issue for multimedia extensions. Specifically, while SLP
is simple and effective, it only identifies parallelism within a basic
block. The following inherently parallel loop would not be paral-
lelized:

for (i=0; i <16; i++)
if (a[i] != 0)

b[i]++;

The limited instruction-set support for control-flow constructs leads
to unique challenges in generating efficient parallel code for multi-
media architectures.

Recently, we have developed compiler technology to support SLP
in the presence of control flow for both the PowerPC AltiVec [17]
and a research architecture called DIVA [8, 6]. In [19], we de-
scribe a general approach, which uses superwordselect opera-
tions to combine the fields of data computed on multiple control
flow paths, as discussed in the next section. In this paper, we exam-
ine an optimization which can be used in some cases to improve the
performance of our general approach usingbranch-on-superword-
condition-codes(BOSCC) instructions. BOSCC instructions allow
the fast detection of aggregate conditions often found in multime-
dia applications. The benefits of BOSCC instructions depend on
properties such as thedensityof true or false branches, the num-
ber of instructions within a branching construct and the data set
size. This paper presents a compiler algorithm and optimizations
for parallelization in the presence of control flow using BOSCC
instructions, and experimental results that illustrate the tradeoffs
associated with these optimizations.

The remainder of the paper is organized as follows. Section 2 il-
lustrates the problem using two alternative versions of SLP code
for the PowerPC AltiVec. Section 3 describes experiments on syn-
thetic data that provide insight into the tradeoff space associated
with using BOSCC instructions. Section 4 presents the compiler
analysis and the algorithm for code generation. Section 5 describes
our compiler implementation and a set of performance measure-
ments on seven multimedia computations. Section 6 discusses re-
lated work and Section 7 concludes the paper.



2. BACKGROUND
In this section we discuss how to exploit SLP in the presence of
control flow using special instructions supported by multimedia ex-
tension architectures. First, we briefly show how the SLP compiler
parallelizes a simple loopwithoutconditional statements, using the
example C code in Figure 1(a). Figure 1(b) shows the first step
which is unrolling the loop to expose superword-level parallelism
in the loop body [12]. An unroll factor of four is selected based on
the assumption that the superword register width is sixteen bytes
and the array type sizes are four bytes. In this case, the unroll fac-
tor is the same as thesuperword size(SWS), which we define as the
number of data elements in a machine superword. Next, the par-
allelizer packs together isomorphic instructions and the resulting
code is shown in Figure 1(c).

for (i=0; i<1024; i++)
C[i] = A[i] + B[i];

(a) Original

for (i=0; i<1024; i+=4){
C[i] = A[i] + B[i];
C[i+1] = A[i+1] + B[i+1];
C[i+2] = A[i+2] + B[i+2];
C[i+3] = A[i+3] + B[i+3];

}
(b) Unrolled

for (i=0; i<1024; i+=4)
C[i:i+3] = A[i:i+3] + B[i:i+3];

(c) Parallelized

Figure 1: Example: Superword level parallelization

for (i=0; i<1024; i++)
if (fore[i] != 255)

back[i] = fore[i];

(a) Original

for (i=0; i<1024; i+=4){
v255 = (255,255,255,255);
v pT = fore[i:i+3] != v255;
back[i:i+3] = select(back[i:i+3], fore[i:i+3], vpT);

}
(b) Parallelization usingselect

for (i=0; i<1024; i+=4){
v255 = (255,255,255,255);
v pT = fore[i:i+3] != v255;
branch-on-none(v pT) L1;

back[i:i+3] = select(back[i:i+3], fore[i:i+3], vpT);
L1:

}
(c) Parallelization using BOSCC

Figure 2: Example: Two approaches for SLP in the presence of
control flow

We now consider superword-level parallelization in the presence of
control flow. We base our discussion on the instruction set archi-
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Figure 3: Merging two superwords using aselect instruction

tecture of the PowerPC AltiVec; other multimedia extension archi-
tectures typically support similar instructions. Figure 2(b) shows a
parallel version of the code in Figure 2(a), where both control flow
paths are executed with SLP exploited in each path. The values
from each path are selected and merged to form the superword re-
sult. This approach is based on a superwordselect operation
that selects individual fields from two superword definitions ac-
cording to the value of a superword predicate variable. Concretely,
the effect of theselect operation “dst = select(src1,
src2, mask) ”, is to assignsrc2 to dst for the bit-fields where
the correspondingmask bit is 1. Otherwise,src1 is assigned to
dst (Figure 3). In the example, the superword predicate variable
is represented asv pT, and is generated based on the result of a
superword compare instruction.

The code in Figure 2(c) takes advantage of a common instruction
supported by multimedia extensions,branch on superword condi-
tion codes(BOSCC), which checks the aggregate value of the con-
dition codes associated with each field of a superword predicate.
For example, a branch-on-none instruction can be thought of as an
AND of the condition codes of all fields of a superword, that is, a
branch is taken if none of these condition codes is true. The su-
perword predicate is derived from the superword condition codes
resulting from the previous superword compare operation.

The code in Figure 2(b) suffers from the cost of always executing
both control flow paths and the extraselect instruction, which
may offset the benefits of parallelism. In Figure 2(c) these over-
heads may be significantly reduced if the expression associated
with the BOSCC is false most of the time.

In the remainder of this paper we describe the tradeoff space in se-
lecting between these two approaches for SLP in the presence of
control flow. The next section shows results of a synthetic bench-
mark to illustrate this tradeoff space, followed by an algorithm and
experimental results from our compiler implementation.

3. THE CHARACTERISTICS OF BOSCC
To gain insight into the factors influencing the profitability of BOSCC
instructions, we performed a series of experiments using the fol-
lowing synthetic benchmark.

for(i=0; i <datasize; i++) {
temp = A[i];
if (temp == B[i])

C[i] = temp + D[i];
}

In this code, whenever the condition(temp == B[i]) evalu-
ates to false, the code following the conditional is bypassed. Thus,
a BOSCC branch is most profitable when the condition evaluates
to false. Profitability therefore depends on thetrue densityof the
predicate, the frequency of true values for the branch test. We ex-
pect that low true densities should correspond to more benefit from
BOSCC instructions.

We present the results of a set of experiments in the three graphs
from Figure 4. In each graph, the horizontal axis corresponds to
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(a) SWS is 4 and data set size is 16 KB.

0 10 20 30 40 50 60 70 80 90 100
True Density (%)

0.0

0.5

1.0

1.5

R
un

 ti
m

e 
(s

ec
)

scalar
select
BON
BON+BOA

(b) SWS is 4 and data set size is 128 MB.
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(c) SWS is 16 and data set size is 4 KB.

Figure 4: Run Time of Synthetic Kernels

the true density of the input data set. We used a random number
generator to create data sets with true densities from0% to 100%.

Each graph shows the execution time of four versions of the code,
as a function of true density. Thescalarcurve represents the execu-
tion time of the original scalar code. The other three versions were
hand-coded in C extended with the Motorola-AltiVec programming
model. Theselectversion corresponds to what would be generated
by the default approach in our compiler, as shown in Figure 2(b)
and described in [19]. TheBON version was derived by adding a
branch-on-none(BON) instruction to the assembly code of these-
lect version to bypass the code guarded by the conditional when
the test on all fields evaluates to false, similar to the example in
Figure 2(c). Finally, theBON+BOAversion was derived by adding
a branch-on-all(BOA) to theBON version. The branch-on-all per-
mits an additional optimization which avoids the select operation;
if all fields are known to evaluate to true, then the value of all fields
of the corresponding superword ofCare the result of the operation
guarded by the conditional.

In Figure 4(a) and (b), the superword size (SWS) is four, that is,
each superword can hold four integer array elements. Therefore the
amount of available parallelism in a superword operation is four.
Figures 4(a) and (b) show the run times of the benchmark for two
data sizes: in (a) the data size fits in the L1 cache and in (b) the data
size is larger than the L2 cache.

First, we consider the results of Figure 4(a). Thescalar curve is
consistently slower than the various parallel versions. It performs
best when the true density is either very low or very high. This
is because the G4’s branch prediction is most effective when the
branching behavior is consistent. In theselectversion, the branch
is eliminated and replaced with a merge of fields across the differ-
ent control flow paths. For this reason, the execution time is the
same regardless of the true density. It has the best performance
among the four versions for true densities at or above20%. The
performance of theBON version is best for true densities near0%
and is the same as theselectversion for true densities above40%.
Interestingly, we see that the slowest performance is at a true den-
sity of 16%, also related to branch prediction accuracy. It is lower
than50% because the branch-on-none is taken only when the con-
ditions for all four consecutive scalar comparisons are false. For a
superword size of four and true density ofD, the probability for
all four conditions to be false is(1 −D)4. When two BOSCC in-
structions are used for theBON+BOAversion, the overhead of an
additional branch overcomes any benefit.

The results of Figure 4(b) show how the tradeoff space is affected
when the data footprint exceeds the L2 cache size. As the com-
putation becomes memory bound, the benefits of parallelization
become less significant. Thus, the performance gap between the
scalar and parallel versions is reduced. For true densities below
40%, thescalar version is actually the fastest. TheBON version
behaves similarly to thescalarversion for low true densities, while
it behaves similarly to theselectversion for higher true densities.
TheBON+BOAversion has the best performance for very high true
densities.

To evaluate the effects of increasing the amount of available paral-
lelism, in Figure 4(c) shows the impact of modifying the data type
to char , thus increasing the superword size to 16. This change
increases the performance gap between the scalar version and the
other parallel versions for all values of true densities. The various
parallel versions exhibit very similar behavior.

From the experiments shown in Figure 4, we can summarize the
following conclusions. The BOSCC versions incur an overhead
due to the addition of branches as compared to theselectversion,
and sometimes this overhead makes them unprofitable. For this
reason, we have decided in our compiler to use just one BOSCC
instruction, comparable to theBON version. We have also deter-
mined that low true density can be used as one predictor of prof-
itability. In addition, the profitability of theBON version over the
selectversion increases as the cost of the instructions in the branch
body increases. Also, as parallelism increases, the profitable true
density range of theBON version actually decreases. While not
shown in these experiments, a related profitability criteria is how
many instructions appear in the code bypassed by the branch; more
instructions lead to greater benefit. Finally, the cost of memory ac-
cess instructions can dwarf the benefits of parallelizing the compu-
tation, but theBON version performs comparably to the best ver-
sion for all true densities. In general, while not always the best
performing version, theBON version has behavior that is compa-
rable to the best version for all of the experiments, whereas both
thescalarandselectversions sometimes are much slower than the
others. Based on the insights presented in this section, we build a
model which can be used to guide the generation of BOSCC in-
structions only when profitable.

4. ALGORITHM
In this section we present the compiler analysis and code genera-
tion techniques used in our approach. We assume that paralleliza-
tion has been performed andselectinstructions are inserted where



control flow paths merge, and focus on using BOSCC to reduce
the overheads introduced by parallelization of multiple control flow
paths. The main components of the algorithm are: a profitabil-
ity model for BOSCC instructions; a profiling phase for collecting
data for the BOSCC model; identifying regions of code and pred-
icates associated with a BOSCC instruction; and code generation
for inserting BOSCC instructions.

4.1 BOSCC model
The BOSCC model determines the profitability of using a BOSCC
instruction to bypass code, allowing the compiler to decide whether
or not to generate a BOSCC instruction. The model uses two key
properties of the code to determine profitability. The first,PAFS
(percentage of all false superwords), is the percentage of superword
predicates where all fields are false, and indicates how frequently
a BOSCC branch is taken. Determining thePAFSvalue associated
with a particular superword predicate must be done dynamically,
and is computed in a separate profiling phase as discussed in Sec-
tion 4.2. The second,NBI (number of bypassed instructions), is the
number of instructions bypassed when a BOSCC branch is taken,
which represents the number of instructions for a single execution
of the parallelized code. TheNBI can be computed statically by the
compiler.

The number of instructions of theselectand BOSCC versions are
Equation 1 and 2 respectively, and a BOSCC instruction is prof-
itable wheneverNI(select ) > NI(BOSCC).

NI(select ) = NBI (1)

NI(BOSCC) = NBI + 1− PAFS ×NBI (2)

In Equation 2, we add an additional instruction for the BOSCC
branch, and subtract the number of instructions skipped by the
BOSCC branch (PAFS× NBI). In reality, the cost of executing
a BOSCC instruction may be higher or lower than that of other
instructions depending on how the branch predictor performs. The
additional weight of executing BOSCC instructions can be varied to
improve the precision of the model, but since it is machine-specific,
we omit it here.

Note that this model takes into account the effects discussed in the
previous section of the data type size and associated parallelism,
as well as the amount of computation bypassed by the BOSCC in-
struction. However, it ignores locality effects, which must be ad-
dressed separately.

To provide intuition as to why parallelization using BOSCC is more
profitable than scalar execution of the equivalent code, let us as-
sume that a scalar instruction is mapped to a single equivalent su-
perword instruction and that the run time is computed as the num-
ber of executed instructions. In this specific situation, we can have
a parallelized code using a BOSCC where each instruction is the
superword counterpart of the scalar instruction in the original. The
BOSCC can be thought of as the counterpart of the original scalar
branch. If the branch body is executed in the scalar version more
than once out of SWS iterations, the branch body in the BOSCC
version will be executed exactly once for SWS scalar iterations. In
this case, the version using BOSCC will run faster than the scalar
version because of less loop overhead. If the branch body is not
executed in the scalar version for SWS iterations, the branch body
in the BOSCC version also will not be executed and will run faster
because of less loop overhead.

4.2 Profiling Support to Compute PAFS

Algorithm INSTRUMENT
Given a basic block B

P← find superword predicates(B)
if (P ==∅) return
Insert a basic block counter to B
for each superword predicate pred∈ P

Insert a counter for pred

(a) Algorithm

vec = vecld(i 0, ptr);
*( basicblock + 0) = *( basicblock + 0) + 1;
vec118 = vecld(i 0, ptr133);
vec119 = vecld(i 0, ptr134);
vec121 = veccmpeq(vec, vec120);
vec123 = veccmpeq(vec118, vec120);
vec125 = veccmpeq(vec119, vec124);
vec126 = vecand(vec121, vec123);
vec127 = vecand(vec126, vec125);
vec129 = veccmpeq((vector unsigned char)vec127, vec120);
vec130 = vec129;
sel = vecld(i 0, ptr135);
vec138 = (vector bool char)vecsplat u8(0);
instrument = vec all eq(vec130, vec138);
if (instrument == 1)
{
*( superword predicates + 0) = *( superword predicates + 0) + 1;
}
sel = vecsel(sel, vec, vec130);

(b) Example

Figure 5: Automatic instrumentation to compute PAFS in pro-
filing phase.

The PAFSvalue in the previous model is determined using au-
tomatic instrumentation in a separate profiling phase1. Figure 5
(a) shows the simple algorithm for inserting instrumentation code.
First, for each basic block, all superword predicates are identified.
Next, for each basic block that contains superwordselect in-
structions, we measure the total number of times the block is exe-
cuted and, for each predicate, the number of BOSCC’s taken. To
increment the counter only when the superword predicate contains
false values in all the fields, we also use a BOSCC instruction. Use
of BOSCC expedites the profile run as compared to checking the
individual fields in a sequential loop. An example of instrumented
code is shown in Figure 5 (b). The instructions in bold font are
added for profiling.

4.3 Identifying BOSCC predicates
Prior to code generation, the compiler locates predicates associated
with select instructions and identifies the set of instructions guarded
by each predicate. The third operand of each superwordselect
instruction, as defined in Section 2, represents a predicate.

The algorithm to extend these predicates to other instructions is
shown in Figure 6. Initially, a null predicate is associated with
all instructions. The algorithm in Figure 6(a) scans the code to
locateselect instructions. For eachselect instruction whose

1While profiling has limitations in deriving dynamic information,
particularly when a different input data set is used than was used
in the profiling stage, we forgo more elaborate approaches for de-
riving dynamic information on-the-fly, since issues of deriving dy-
namic information are orthogonal to the focus of this work. Other
approaches could also be used to derive the value of PAFS.



Algorithm ISP (B): Given a basic block B

// Initially, all instructions are associated with null predicates
for each select instruction I:“dst = select(src1, src2, pred)”∈ B

where dst == src1
// src1 is associated with ’true’ value of pred
// src2 is associated with ’false’ value of pred

predicate(I)← pred;
IdentifyBranchBody(src2, I, pred);
IdentifyMemoryAccesses(src1, dst, pred);

(a) Identifying superword predicates

Algorithm IdentifyBranchBody (src, I, pred):
Given an operand src, an instruction I and a predicate pred
rd← reaching definitions of src;
if (rd is not a single reaching definition∨

I is not the only use of rd)return ;
predicate(rd)← pred;
for each source operand src of rd

IdentifyBranchBody(src, rd, pred);

(b) Identifying branch body

Algorithm IdentifyMemoryAccesses(src, dst, pred):
Given operands src, dst and a predicate pred

rd← reaching definitions of src
u← uses of dst
if (rd is single reaching definition∧ rd is a load∧

u is the only use∧ u is a store∧
rd and u access the same address)

predicate(rd)← pred
predicate(u)← pred

(c) Identifying unnecessary memory accesses

Figure 6: Algorithm to identify a predicate for instructions

first source operand and the destination operand are the same, it
associates the predicate found in the third source operand with the
select instruction, and then follows use-def and def-use chains to
locate other instructions to which this predicate can be associated.
Two sets of instructions are considered, as shown in Figures 6(b)
and (c).

The goal of the algorithm in Figure 6(b) is to identify the set of
instructions that are executed only when the predicate evaluates to
true. The result of a superwordselect instruction is the first
operand (src1 ) when the predicatepred contains all false values.
We can therefore bypass any instructions that define the value of the
second operandsrc2 if all the fields ofpred are false. This set of
instructions can be thought of as the branch body from the original
program, although it could include an even larger set of instruc-
tions. The algorithmIdentifyBranchBody then recursively
follows the definitions of the variables contributing to the value of
src2 . Those that have a single definition reaching a single use
can be guarded by the predicatepred , and can be bypassed by the
BOSCC instruction. The goal of the algorithm in Figure 6(c) is to
eliminate unnecessary memory accesses occurring when all fields
of pred evaluate to false. If a load tosrc1 and a store ofdst
occur in the code, the value is not modified between the load and
store, and no other instructions depend on this load and store, both
memory accesses can be predicated withpred . The algorithm in
Figure 6 guarantees that at most one predicate is associated with
each superword instruction.

4.4 Code Generation
Figure 7(b) shows the main algorithm to insert BOSCC instruc-
tions. After the predicate for each instruction is identified, instruc-
tions with the same predicate are combined into a BOSCC region
if there are no intervening dependences. In the algorithm shown
in Figure 7(a), the initial BOSCC regions are formed by finding
consecutive instructions guarded by the same predicate. Then the
BOSCC resions associated with the same non-null predicate are
merged if no data dependences with the intervening instructions
prevent the code motion. The algorithm first checks if the later re-
gion can be moved to the end of the earlier region. If this is not
possible because of the data dependences with the intervening in-
structions, the algorithm checks if the earlier region can be moved
before the first instruction of the later region. The goal is to form
the largest possible region guarded by a single BOSCC predicate.
The number of adjacent instructions guarded by the same predicate
provides the value ofNBI for the BOSCC model, while the value of
PAFSis derived from profiling. If profitable, a BOSCC instruction
is inserted just prior to the instructions that form a BOSCC region,
and it branches to the instruction immediately following the last
instruction of the BOSCC region.

5. IMPLEMENTATION AND EXPERIMENTS
This section describes our SUIF implementation of the algorithm
presented in Section 4, and presents an experimental evaluation of
our approach. The experimental performance data was obtained
by using our implementation to automatically perform superword-
level paralellization on a set of kernels from multimedia applica-
tions.

5.1 SLP Implementation
We have implemented the algorithms of Section 4 in the SUIF com-
piler [9]. The implementation, shown in Figure 8, is based on our
extension of Larsen andAmarasinghe’s SLP compiler [12] to ex-
ploit SLP in the presence of conditionals, denoted ISI-SLP [19].
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Figure 8: An SLP-based compiler that supports BOSCC.

Algorithm FBR (B): Given a basic block B
n← 0
Region[0]← new region(NULL)
current← NULL
prev← NULL
for each instruction I∈ B

pred← predicate(I)
if (current6= pred)

Region[n].end← prev
n++
Region[n]← new region(pred)
Region[n].moved← false
Region[n].begin← I
current← pred

prev← I
Region[n++].end← I

for (i=1; i<n; i++)
for (j=i+1; j<n; j++)

if (Region[i].predicate6= NULL ∧
Region[i].moved == false∧
Region[i].predicate == Region[j].predicate)
if (Region[j] can be moved after Region[i].end)

move instructions in Region[j] after Region[i].end
Region[j].moved← true

else if(Region[i] can be moved before Region[j].begin)
move instructions in Region[i] before Region[j].begin
Region[i].moved← true

return Region, n

(a) Form BOSCC regions

Algorithm Insert-BOSCC
Given a basic block B

B′← ISP(B)
R, n← FBR(B′)
for (i=1; i<n; i++)

if (R[i].moved == false∧ R[i].predicate6= NULL)
NI select← # instructions(R[i])
NI boscc← NI select + 1 - PAFS(R[i])× NI select
if (NI boscc< NI select)

Insert boscc(R[i])

(b) BOSCC insertion algorithm main

Figure 7: BOSCC insertion algorithm

The boxes inside the thick dashed line represent the algorithms de-
scribed in this paper. The input to our compiler is sequential C code
and the output is parallelized C code that may contain BOSCC in-
structions. The compiler runs in two phases. In the first run, it
generates instrumented code which is then compiled by an AltiVec-
extended GCC [17] and linked to a library that supports the gener-
ation of a PAFS file. Theinstrumentation for BOSCCcorresponds
to the profiling algorithm of Figure 5, and generates a file that re-
lates basic block indices to predicate names. This file is read by
the instrumented executable for computing the PAFS values. In the
second run, the predicates in the source code are annotated with
PAFS values produced in the profiling run.Identify Predicatesim-
plements the algorithm shown in Figure 6 andInsert BOSCCim-
plements the algorithm of Figure 7.

5.2 Experimental evaluation
We performed a set of experiments to evaluate the effectiveness of
the two approaches (selectandboscc) presented in Section 4. For
the experiments presented in this section, we used seven kernels
selected from multimedia applications.

The experiments were performed on a Motorola PowerPC G4 with
a 533 MHz MPC7410 processor, an 8-way set-associative 32KB
L1 cache and an 2-way set-associative 1MB L2 cache. To com-
pile both scalar and superword codes, we used an AltiVec-extended
GCCwith the-O3 option.

Table 1 shows the seven kernels used in the experiments, each con-
taining at least one conditional. The data widths of the primary ob-
jects of each kernel, ranging from 8-bit to 32-bit fields, are shown
in the third column. The last two columns describe the two input
data sets used in the experiments: the original input data, and a
synthetic input designed to yield a particular PAFS value.

Figure 9 shows speedup curves for the kernels in Table 1. Each
graph shows the speedups of three parallel versions of a kernel,se-
lect, N-BOSCCandM-BOSCC, with respect to the sequential ver-
sion of the kernel. TheN-BOSCC(Naive BOSCC) version is de-
rived by inserting a BOSCC instruction in all possible BOSCC re-
gions. In theM-BOSCC(Model-based BOSCC) version, the model
described in Section 4 is used to evaluate the profitability of insert-
ing BOSCC instructions. All three versions of each kernel were
derived automatically using our SUIF-based implementation.

Figure 9(a) shows the speedups of TM for each of the 72 templates
of the kernel’s input data set, for versionsselect, N-BOSCCandM-
BOSCC. The speedup ofN-BOSCCvaries with the input data sets,
since the true density varies from template to template. TheM-
BOSCCversion also has a BOSCC instruction for all templates,



Name Description Data Width Input Size (original) Input Size (synthetic)
Chroma Chroma keying 8-bit character 48× 48 color image (12 KB) 400× 5 color image(12 KB)
Sobel Sobel edge detection 16-bit integer 1024× 768 gray scale image (3 MB) N/A
TM Image correlation 32-bit integer 64× 64, 72 32× 32 (1.4 MB) 16× 64, 1 16× 32(10 KB)
Max Max value search 32-bit float 2 100× 256× 256 (52 MB) 2 8× 256 (16 KB)

transitive Shortest path search 32-bit integer 2 1024× 1024 nodes (8 MB) N/A
MPEG-dist1 dist1 of MPEG2 encoder 8-bit character data for the first 1000 calls (11 MB) N/A

EPIC-unquantize unquantizeimage of unepic 16/32-bit integer reference input (393 KB) N/A

Table 1: Benchmark programs
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Figure 9: Speedups over scalar version for real data
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Figure 10: Speedups over scalar version for randomly generated data

and therefore the speedups are the same as those ofN-BOSCC.
Figure 11 shows that the speedup curve of the BOSCC versions
closely matches the percentage of taken BOSCC branches of each
template. Although not shown in the figure, the speedups ofselect
follow the inverse of the percentage of taken BOSCC branches, be-
cause the run time of the sequential baseline is affected by the PAFS
while that ofselectis not.
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Figure 11: TM: % taken BOSCCs

The speedups of the parallel versions of Chroma-keying are shown
in Figure 9(b). The horizontal axis corresponds to the ratio between
the sizes of the foreground object and the background image in the
input data set (both the size and shape of the foreground object af-
fect the true density of the input data). Since in Chroma-keying a
BOSCC branch is taken when all pixels in a superword are outside
the foreground object, the speedups corresponding to smaller fore-
ground objects are larger, as expected. Inselect, the runtime does
not vary with the true densities, but there is a small speedup due to
the fact that in the sequential version the body of the conditional is
executed more often as the true density increases.M-BOSCCfol-
lows the better of theselectandN-BOSCCspeedups for most input
data sets. The few exceptions are caused by a simplification in our
model, where we assume that the cost of executing a BOSCC in-
struction is the same as any other instruction. In general, branch in-
structions cost more than arithmetic and logical instructions as the
percentage of the taken BOSCCs approaches 50 %. The BOSCC
model makes the right decisions around 0 % and 100 % but it tends
to make wrong decisions in between the two ends when the margin
is small.

For MAX, the input data set was derived by running the TOM-
CATV benchmark (from which the kernel is extracted) and collect-

ing the input data to the MAX kernel. The speedups of MAX are
1.26 for selectand 1.22 forN-BOSCC, as shown in Figure 9(c).
In N-BOSCC, each BOSCC body contains a single instruction, the
selectinstruction shown below.

max = select(max, new value, compare);

We expected GCC to generate a BOSCC instruction for the region
associated with theselectinstruction. However, the GCC version
we use generates code such that theselect instruction is always
executed and a newcopy instruction is added after the BOSCC,
possibly because the destination variable (max) is live across the
iterations of the innermost loop. ThusN-BOSCChas two extra
instructions, a BOSCC instruction and an extra copy instruction,
resulting in a slow down with respect toselect. When this problem
is corrected manually at the assembly level by removing the copy
instruction and moving the BOSCC ahead of the select instruction,
the newN-BOSCCperforms better thanselect.

For theN-BOSCCversion ofSobel, a BOSCC instruction is gener-
ated for four BOSCC regions containing 2, 2, 1, and 1 instructions,
respectively, yielding the same performance as theselectversion.
The PAFS for each BOSCC region are 17 %, 4 %, 2 % and 82 % re-
spectively. The high and low values of PAFS have reduced the cost
of BOSCC instructions. Also, large latency of memory references
have played a role in this result by overlapping the BOSCC la-
tency. When memory latency is reduced by reducing the data size,
N-BOSCCslows down by 10 % with respect toselect. No BOSCC
instructions are generated for theM-BOSCCversion. The speedups
of the parallel versions with respect to the sequential baseline are
2.59 for all three versions, as shown in Figure 9(d).

For Transitive, N-BOSCCperforms slightly worse thanselect, as
shown Figure 9(e), again because the only BOSCC region in the
kernel contains a single instruction. In addition, since the BOSCC
instruction is never taken, the hardware branch predictor performs
well.

TheN-BOSCCversion ofMPEG-dist1has 16 BOSCC instructions,
generated for 4 basic blocks. Each BOSCC region consists of two
instructions, and the PAFS ranges from 30 to 40% for all BOSCCs
increasing their costs. Thus theM-BOSCCversion does not have
BOSCC instructions.

EPIC-unquantize, shown in Figure 9(g) is interesting because the
M-BOSCCversion outperforms bothselectandN-BOSCC. While



N-BOSCChas seven BOSCC instructions,M-BOSCChas only four
BOSCCs, associated to the four BOSCC regions with the highest
number of instructions and PAFS. As a result, whileselectper-
forms worse than the baseline andN-BOSCCachieves a negligible
improvement, theM-BOSCCversion speeds up by 12 %.

To further investigate how the performance of theM-BOSCCver-
sions varies with the input data set, we used a random number gen-
erator to derive synthetic data sets with PAFS from 0% to 100%
for TM, Chroma-keying and MAX. Figure 10 shows the speedups
of the select, N-BOSCCandM-BOSCCparallel versions of these
three kernels. For all three kernels, the speedup ofselectdecreases
as the PAFS increases, because the sequential version performs bet-
ter when the scalar branches are taken more often. In general,N-
BOSCCruns increasingly faster than the sequential version as the
PAFS increases. This is because theN-BOSCCversions skip su-
perword instructions, each of which corresponds to SWS scalar in-
structions. Mild slopes in the lower half of the PAFS range are
due to the branch prediction mechanism of the machine. Finally,
M-BOSCCusually performs as well as the better of the two other
versions except for a small range of PAFS values, again due to our
model’s simple assumption for the cost of a branch.

6. RELATED WORK
There are several prior work on automatic parallelization for mul-
timedia extensions [12, 11, 20, 4, 13, 3, 7, 14]. Two distinct ap-
proaches are used, that is, SLP [12, 11, 14] and an adaptation of
vectorization technique [3, 20, 7]. Conventional parallelization
technique for conditionals has been documented in [3, 20]. Bik and
et. al. use a technique calledbit maskingto combine two defini-
tions. However, their method is limited to singly nested conditional
statements [3]. Our previous work describes the SLP techniques in
the presence of control flows [19]. To exploit SLP for conditioinals,
we borrow many techniques developed for instruction level paral-
lelism [18, 15].

Branch on superword condition code(BOSCC) is supported in Al-
tiVec G4 [17], DIVA [6], and other architectures [2, 1].movemask
instruction in Pentium can also be used for a similar purpose to
BOSCC [10]. However, no prior work describes generating BOSCC
instructions automatically to reduce parallelization overhead of con-
ditionals. Vector flag population count instruction [16] can be used
to change the control flow similar to BOSCC instructions in vec-
torized programs. However, the probability of taken BOSCCs de-
creases exponentially to the vector length and the long vector length
of vector machines reduces the chances for the profitability of BOSCC
instructions dramatically.

7. CONCLUSION
This paper has described key concepts in optimizing control flow
constructs for multimedia extension architectures. In many multi-
media ISAs, including the PowerPC AltiVec, parallel code in the
presence of control flow can utilizeselect instructions to com-
bine multiple definitions along different control flow paths. We dis-
cussed how to optimize this type of code using a special instruction
that examines superword condition codes to bypass unnecessary
computation when the entire superword associated with a control
flow test has all false values. We have described an implementation
and presented a set of results that pinpoints the tradeoff space as-
sociated with these two alternate versions of superword code in the
presence of control flow.
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